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Abstract
Randomly oriented or [110]-textured polycrystalline

silicon layers have been grown on foreign and silicon
substrates by iodine vapor transport at atmospheric pressure
with high rates (~3 µm/min) and large grain sizes (~20 µm)
at a moderate temperature of ~900°C.  A gravity trapping
effect coupled with the cold-top vertical reactor
configuration allows use of an open-tube system without
much loss of the volatile gas species and offers high-speed
transport of silicon in the reaction zone at the hot bottom.
High quality epitaxial layers can also be grown on CZ-Si for
electronic applications or on MG-Si substrates for thin-layer
solar cells.

1. Introduction
The atmospheric pressure iodine vapor transport (APIVT)

[1] of silicon is based on a disproportionation reaction [2]
between SiI2 and SiI4.  It is a non-vacuum, open-tube
deposition system technique with potential for continuous
processing, low capital cost, and no need for expensive
effluent treatment.  It has shown to be able to deposit
polycrystalline silicon thin layers on foreign substrates at
high rates (~3 µm/min) and with large grain sizes (~20 µm)
at a moderate temperature of about 900°C.  This is to report
our recent results in advancing the technique for thin silicon
solar cells.

2. Reactor
A vertical quartz tube houses the substrates, Si source,

iodine, and all the resulting silicon iodides. Two heaters
control the source and substrate temperatures independently.
The reactor is maintained cold at the top and hot at the
bottom. The deposition zone can be expanded as required to
accommodate large substrates or to allow a vertical
arrangement of multiple substrates.  A schematic of the
reactor setup is
shown in
Fig.1. The
cloud of iodine
and silicon
iodides trap all
the volitile gas
species
underneath.  A
continuous
hydrogen
purge flow
keeps air from
entering the
system.

Fig 1. Schematic for a two-heater reactor

3. Large grain sizes
The average grain size strongly depends on substrate

temperature.  However, even at only 750°C, the obtained
grain sizes are still on the order of 5 µm (Fig. 2), larger than
those achieved by chlorosilane-CVD processes at 1200°C.
Once the substrate temperature is increased to 950°C, the
grain sizes reach over 20 µm (Fig. 3).

These large grain sizes are believed to be the result of a
relatively small free-energy driving force (and thus a low
density of nucleation), as evidenced by strongly faceted
growth. It is also possible that the reversible nature of the
disproportionation reaction between Si2 and SiI4 etches back
small nuclei caused by any thermal fluctuation.

Fig 2. Poly-Si layer grown at 750°C

Fig 3. Poly-Si layer grown at 950°C

4. Highly [110]-textured and randomly oriented
polycrystalline Si films

APIVT-grown films typically have grains with random
orientations regardless of substrates used. By modifying the
deposition conditions, we obtained highly [110]-oriented
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Fig 2. Poly-Si layer grown at 750°C

Fig 3. Poly-Si layer grown at 950°C

4. Highly [110]-textured and randomly oriented
polycrystalline Si films

APIVT-grown films typically have grains with random
orientations regardless of substrates used. By modifying the
deposition conditions, we obtained highly [110]-oriented



films.  Fig. 4 shows X-ray diffraction peaks from two
samples, both deposited on high-temperature glass, in
comparison to standard silicon powder peaks.  All the peaks
were normalized to the standard [111] peak.  The solid line
is for a sample that was deposited under normal conditions,
which showed almost random orientations, with slight [110]
texturing.  The dashed line, on the other hand, is a sample
deposited under a different condition, but with similar grain
size and thickness.

Transmission electron microscopic (TEM) observation
indicates that more than 90% of the grains are within about
5° of the <110> axes.  Two of the perfectly [110]-aligned
grains actually allow one to see a high-resolution image of
the grain boundary with dislocation cores (Fig. 5).
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Fig 4. XRD peaks of poly-Si films

Fig 5. HRTEM image of two [110]-oriented grains

5. Epitaxial growth
We obtained high quality epitaxial growth on silicon

substrates when a clean interface is maintained.  This allows
us to obtain high-quality active layers on low-cost
metallurgical-grade silicon substrates for solar cells or
different doping layers on single crystal substrates for
micro-electronic applications.  Epitaxial layers also give us
a measure of the solar cell performance limitations of this
material independent of any grain size effect.  TEM studies
of the layers indicate very low density of crystallographic
defects (such as stacking faults and dislocations) compared
to the underlying substrate.

Two hetero-junction solar cells with a-Si emitters were
fabricated. One was made on a 20-µm thick epitaxial Si

layer grown on a heavily doped single-crystal Si wafer
(~0.0095 Ω-cm). The other was prepared on a CZ-Si control
wafer.  As shown in Fig. 6, the APIVT-grown epitaxial Si
layer demonstrates a thickness-limited 23 mA/cm2 and the
same Voc of the CZ-Si control cell.
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Fig 6. Diagnostic solar cell result. Top: Epitaxial-Si grown
by APIVT; Bottom: CZ-Si control

6. Summary
The APIVT technique produces continuous polycrystalline

silicon layers at high deposition rates (~3 µm/min) with
large grain sizes (~20 µm) at a moderate temperature of
900°C on non-silicon substrates such as mullite, Corning
Vycor  high-temperature glass, or Corning LGA-139  glass
ceramics.  Randomly oriented or highly [110]-textured films
can be obtained.  Epitaxial growth on single-crystal Si
substrates show a very low density of lattice defects and
comparable device performance to CZ-Si.
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